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Many luminous astrophysical systems are
capable of producing strong shocks.
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We can also address this
question from ‘first-principles’
by means of self-consistent
simulations.

Need to capture the interaction between
the fields & the particles self-consistently

Particle-in-cell codes are the ideal tool to
study this problem. We used Tristan-MP.




Relativistic quasi-parallel shocks

= Efficient energy exchange between
electrons and ions in the upstream

= Preheats electrons to significant
fraction of ion energy.

Sironi & Spitkovsky 2011 Sironi & Spitkovsky 2011



Non-Relativistic quasi-parallel shocks

Density in a quasi-parallel M=50
Hybrid simulation.
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Cosmic rays stream far from the shock, evacuate underdense
cavities via a current-driven instability (Reville & Bell 2012;
Caprioli & Spitkovsky 2013).



Non-Relativistic quasi-parallel shocks

Density in a quasi-parallel M=50

Hybrid simulation.
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€ ~0.1
PIC simulations of quasi-parallel ®  Sionis
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Subluminal

Particles confined to

B, canreturn
upstream.
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Mildly-Relativistic quasi-parallel shocks
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Mildly-Relativistic quasi-parallel shocks
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Mildly-Relativistic quasi-parallel shocks
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Fully kinetic simulations
that capture the
high-energy ion-driven

turbulence discovered
using Hybrid simulations.




Only a small fraction of the
shock’s energy is in
non-thermal electrons. 10-6
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Non-resonant ion
instability creates
large scale
transverse fields
that are good at
scattering
particles back

towards the shock.
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Do the fillaments matter?

Perform
Experiment
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Effectively 1D
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Superluminal

Particles confined to
BO cannot return
upstream
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Subluminal
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How does €_change with
Lorentz factor of shock?

Simulation set-up
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Mildly-Relativistic
parallel shocks

All velocities show
the filamentation
instability.

Preliminary
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Mildly-Relativistic
parallel shocks

We see evidence for
alargeincreaseine_
as v->c. 107

€_likely dependson M, T, 6... Shock Speed is
not only important parameter

Caveat:



=» We have examined particle acceleration in magnetized mildly relativistic shocks
fully kinetic PIC simulations.

Quasi-parallel shocks are efficient ion and inefficient electron accelerators.
Quasi-perp, superluminal, shocks do not produce power-law distributions.

=» We used unprecedentedly large boxes to capture non-resonant ion driven
turbulence in quasi-parallel shocks.

Large scale transverse upstream fields scatter particles back towards the shock,
and filaments at the shock front allow electrons to return upstream.

= Preliminary simulations of magnetized quasi-parallel shocks show that €_ increases
from ~1073 to ~a few x 1072 as the shock velocity goes from 0.33c to 0.95¢, while €
remains ~constant.

Avarying €_with velocity may be directly tested through modeling observations
of objects that pass through the mildly relativistic regime -- e.g. GRB afterglows at
late times.



